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INTRODUCTION 

~O~CTIVE heat transfer in steady laminar flow for various 
geometries have been extensively covered in the existing 
literature. Kays and Crawford [1], Bejan [2], Eckert ef al. [3] 
and Shah and London [4] discussed the majority of the more 
important cases and have given the heat transfer results. 
However, the one important case of heat transfer between 
two confocal elliptic pipes with various wall heating con- 
ditions is not included in these studies. Besides the scientific 
interest of this case, the design of a heat exchanger in a 
narrow space may require information on convective heat 
transfer in annular elliptic pipes. Additionally, the limiting 
case of an elliptic pipe with a flat core, heated or cooled 
independently on its internal and external walls, may also 
find useful engineering applications [S]. 

The problem analyzed here is the extension to ref. [S] 
where uniform heat generation is included. The results for 
an ellipticity of 0.5 are given graphically to illustrate the heat 
transfer characteristics of the problem. 

Consider an elliptic annular pipe subjected to two inde- 
pendent axially uniform heat fluxes through its inner and 
outer walls. Along the length of the pipe where the velocity 
and temperature distribution are fully developed, the tem- 
perature dist~butions must have the functional form, equa- 
tion (3.6) of ref. [5] 

( > $+Z e= -h(x,-2m*cos2~) 
atlz 

+G(E,-E,cos2~+E,cos4t& (1) 

The solution of equation (1) is given as equation (3.9) in ref. 
PI 

e = ei.go+hlfo+ficos2~)+G(eo+e, cos2q+e, cos4q) 

(2) 

where the same nomenclature of ref. [5] is retained. 

HEAT FLUXES THROUGH THE WALLS 

The element of heat flux, du, measured in the positive 
direction of 5 through an elemental area of < = constant 
cylindrical surface is 

where 

L = f(A+B). (4) 

A and B are the semi-major and semi-minor axes of the 
cross-section of the outer elliptic pipe, respectively, and F is 
the characteristic heat flux. 

The heat gain rates U, and V,,, per unit length of inner and 
outer pipes, respectively, which are taken to be positive when 
heat Bows into the fIuid, are expressed as 

u, = _2nLF BG+~~fb(@)log~+wGeb(~)logw 
log 0 1 

(5) 

u, = 2nL 
~G+hfb(l)logw+Ge~(l)logw 

1ogw 1 (6) 
with 

and 

1 -0J2 
e;(l) =+(l-m’)-~in4-~u1(l-l-m4) 

-&u,(l+o*) l,$ +$f:a, (8) 
( > 

where e;(w) and e;(l) are the derivatives of e with respect to 
< evaluated at r = w and 1 and 

fi=E’” 
LCPe (9) 

which is an alternate definition for the dimensionless inner 
wall excess temperature. 

Two special values of p are given below. 

For an insulated outer wall (U, = 0) 

fi=&=- 
h~~(l)log~+Ge~(l)log~ 

G (10) 

where 

f6(1) = $[u, -2(1 -m”)]. (11) 

For an insulated inner wall (V, = 0) 

B=&=- whf’,(w) log w ; cuGeb(w) log w (12) 
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where 

fb(w) = &[a, -2(& $1. (13) 

The difference between these being 

8, -A = F(l-w2) 1,; -I,,logw (14) 
( > 

where 

d 
I”, = $(1-o?) 1+ 2 ( > -2m 

4 (l-4 
(l+w2) 

--$(l-CL?) 1-g a,. (15) 
( > 

The ratio, I, of the heat gains from the outer wall to that 
from both walls per unit length of pipe is obtained as 

G0 J---J 
Iz=m=8,-pi 

depending on the dimensionless inner wall temperature /I 
only. 

For the special case of equal wall temperatures, 
T, = T,@ = 0), the ratio &, is 

a, = 

$h (1-w*)+2(1-m“)logw -ZGeb(l)logw 1 
(17) 

Introducing the ratio, p = I./L,, the alternate dimensionless 
inner wall excess temperature, B, can also be expressed as 

B = -(l-P) 
hfb(l)logw+Ge;(l)logw 

G . (18) 

After substituting this into equations (5) and (6), the inner 
and outer heat fluxes are reduced to 

U, =2nLf{-;h(l-w’)(l+$) 

+IuuG-Ic[hf6(o)+Geb(w)l (19) 
1 

U0 = 2nLF(~[gfb(l)+Geb(l)l}. (20) 

The values of I, /?, and /I for three special cases are as 
follows : 

for insulated outer wall (U,, = 0) 

1=0, p=pi, /L=o; 

for equal wall temperatures (T, = TJ 

I = &, /I = 0, /l= 1; (21) 

for insulated inner wall (Ui = 0) 

I=l, /I=/&, /L=/L0=f. 
0 

For the cases of equidirectional heat fluxes through both 
walls, p must fall into the following ranges : 

for 3, > 1 and p > pO, - 1 < z < 0 
0 

for I < 0 and p = --n’p(,, z 
(22) 

< -1 
0 

where n is any positive factor. 

fluxes through the walls can be represented by either of the 
parameters 1 or p. 

CONVECTIVE HEAT TRANSFER 
COEFFICIENTS 

The mixed mean bulk temperature, r,, at any station 2 
is defined by 

T,,, =p WTds 
s QS 

where S and ds are full and elemental cross-sectional areas, 
respectively. A mixed mean excess temperature, E,,,, can be 
similarly defined as 

&=T,-To=; sWEds 
s 

where 

Q = 2nLRE,I,,. (25) 

Substituting the above equation for Q into equation (24) 

where 

FL J 

Em= -k-I,, 
(26) 

(27) 

noting that for non-circular cross-sections, peripherally 
uniform temperature distributions do not correspond to 
uniform heat flux distributions around the peripheries. 
The mean convective heat transfer coefficients h, and hi for 
the outer and inner walls may be defined as 

U, = (To-T,,,)P,h,, U, = (T,-Tm)Pihi. (28) 

Also by using equations (9) and (26), the factor in equation 
(28)2 can be changed to 

(29) 

Equations (19), (20) and (28) yield the Nusselt numbers as 

Nu, = (DE), +[hl’,(l)+Ge;(l)] 

Nu, = (DE), *&J{-h(y)(l+$)a 

+IuoG--[hSb(l)+Geb(l)l I 
The integral J in this case is calculated as 

J= BGY+G(Jo+JZ+J4)+h(J6+Js) 

where 

Y = - ’ E,g!d& 
s 0 r 

J, =; 
s 

‘Eie,;dC. 
0 

and I,, = ‘(E,logc)id& 
Now it is clear that any possible combinations of the heat 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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FIG. 1. Nusselt number vs core size for ellipticity m = 0.5. 

The denominators of Nu, and Nui, equations (30), are also 
obtained as 

DEN0 = (1-~)Z,,[hfb(l)+Geb(l)]+G(Jo+J2+J~) 

+h(Js+Js) (36) 

DENI = DEN0 - (I- p) 
[ 

hf6(l)logo+Ge6(l)logo I 

G I 
00. 

(37) 

Therefore, the Nusselt numbers from equations (30) can be 
written in their final form as 

Nui = (DE),& {-h(y)(l+$) 

+I,,G-~[hf6(1)+Geb(l)l (38) 

Nu, = (DE), DENO oo LZ [hfb(l)+Geb(l)]. 

The values of the parameter ,u depend on the desired heat- 
ing and cooling combinations on the walls. For three special 
cases, insulated inner wall, insulated outer wall and equal 
wall temperatures, its values are given in equations (21). For 
calculation purposes, two additional special values were 
selected as 

a.=2: 2 s_ 1 
!J=x &--rj 

3,=-l: p=; gL2 
0 0 

(39) 

which represent heating and cooling conditions where the 
wall heat fluxes are equidirectional but of opposite sign. 

With these five different values of p, the numerical values 
of the outer and inner Nusselt numbers were calculated over 
the range of values of m and m. The results are plotted in 
Fig. 1 for one value of the ellipticity, M = OS. 

NUMERICAL RESULTS AND CONCLUSIONS 

Convective heat transfer in the annulus of two confocal 
elliptic pipes is analyzed and the results are presented 
in analytical closed forms. Equations (38) show that the 
Nusselt numbers depend on five independent parameters, 
namely : the magnitude of heat generation, the ellipticity of 
the pipe (the core size), the Reynolds number, the Prandtl 
number, and the wall temperature gradient. 

The Nusselt numbers in equations (38) are plotted vs the 
core size of the pipe, o, for values of Prandtl number 
(Pr = 0.005), Reynolds number (ReL = 1500), temperature 
gradient along the wall (c = aT/aZ = 538”C), and the mag- 
nitude of heat generation (h = 966 230 W m-‘) for various 
heating combinations as defined in Fig. 1 of ref. [5]. The 
Prandtl numbers, temperature gradient and magnitude of 
heat generation are for nuclear coolant (liquid sodium) 
which has the widest application in nuclear engineering [6]. 

Nusselt numbers are plotted vs core size, w, for constant 
Reynolds number, constant Prandtl number and constant 
heat generation and for one ellipticity (m = 0.5). This is 
presented in Fig. 1. It can be observed that the Nusselt 
numbers for the inner pipe initially increases from a core size 
of w = 0. I to 0.18 and then decreases gradually as ellipticity 
increases. One can conclude that some optimum heat transfer 
properties exist. For some engineering applications, design 
of heat exchanger in narrow spaces, these optima may be 
useful. The Nusselt numbers for the outer pipe will decrease 
gradually as ellipticity increases. It is seen from Fig. 1 that, 
in the limiting case of o = 1.0, which is corresponding to a 
simple pipe, the outer Nusselt numbers for all possible heat- 
ing combinations are increasing with the amount of heat 
generation considered by 14% [5]. Also the inner Nusselt 
numbers for all possible heating combinations increases with 
the amount of heat generation considered by 17% [5]. In all 
cases, however, the heat transfer is augmented for this case 
with heat generation as that given in ref. [5]. 
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